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LETTER TO THE EDITOR

Series approach to the bond bending model

Jian Wang
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 21 April 1995

Abstract. The -bond bending model is studied using the series expansion method on 2
honeycomb lattice. The elastic splay susceptibility xsg and the elastic compressional
susceptibility . are calculated up to 18th order. The elastic splay crossover exponent, sp,
is found to be fgp = 1.31 £ 0.02 which is very close to the conductivity exponent, {g., of the
tesistor network. From the scaling relation fg = v + {sp, we found that the bulk modulus
exponent fg = 3.98 £ 0.02 which is in excellent agreement with the result fg = 3.96 & 0.04,
obtained by Zabolitzky et af using a transfer matrix technique on the same lattice.

Recently much attention [1-6] has been directed towards randomly diluted elastic network.
“Various models have been studied, such as the central force model {1, 3, 5], the bond bending
model [2,4], and the granular disk model {7, 8], etc. The bond bending model is perhaps
the best understood. It has been suggested [4,9, 10, 11] that, for the bond-bending model,
one has the relation

fB=I+2U (1)

where v is the correlation length exponent for percolation and ¢t = (d — Z)v + g, [12]
is the exponent for the conductivity of the analogous randomly diluted resistor network
defined by Z(p) ~ o|p — p.|, where o is the conductance of an occupied bond (which
occurs with probability p) and the vacant bonds occurring with probability 1 — p have zero
conductance, Here ¢g. is the conductivity crossover exponent for the resistor network. In
terms of this exponent equation (1) can be written as fz = dv-+ {r.. Zabolitzky ez al
[13] have calculated fg for the bond bending model on a honeycomb lattice by computer
simulation using a transfer matrix method. They found that fp = 3.96 £ 0.04. Using
t = 1.30 [14] (or equivalently {g. = 1.30) and v = %, we see that equation (1) is almost
exact. Recently, there have been some efforts to understand the physics behind (1). For
instance, it has been proved [15] that the elastic splay crossover exponent [5] ¢sp of the bond
bending model, which is related to the bulk modulus exponent fz = dv + {sp [11,8,15],
is the same as the conductivity crossover exponent (g, for the lattice animal. Using the
series expansion method the elastic splay crossover exponent fgp has been calculated [16]
on & honeycomb lattice up 10 13th order. Due to the shortness of the series, the crossover
exponent {sp could not be accurately determined. In this letter, we [17] have extended the
series to 18th order, which enables us to estimate the exponent very accurately. We found
that {gp = 1.31 £ 0.02, which is in excellent agreement with {g.. Our numerical result
indicates that the elastic splay crossover exponent Esp and conduct1v1ty Crossover exponent'
{Rre are the same in two dimensions.
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Consider the randomly diluted bond bending model in two dimensions whose
Hamiltonian can be written as
H =gk Y fup - RyPep + Shuo Y [up X Ry —upy X Ry Pepep @
B b5 .
where b labels bond and (b, &'} denotes that the sum is over pairs of nearest-neighbour
bonds. Also up = u; — wy, Uy = Uy, — Uw, Where the s label sites at the ends of the
bonds, u, is the displacement at site s, ks is the central force elastic constant, kyy is the
bond-bending elastic constant, ﬁb is 2 unit vector along the nearest-neighbour direction, and
¢, is an indicator variable which is one with probability p and zero with probability 1 — p.
Note that the first term in (2) is the Hamiltonian for the central force model. The second
term of (2) can be written as

Hage = Shoy ) (65 — OpVerey 3)
{65

where 6 = (up % ﬁ;,) -k is the angular displacement of the bond b and % is a unit vector
perpendicular to the plane of the lattice.

In a manner similar to the two-point resistive susceptibility xg. introduced by Harris
and Fisch {12] in calculating the conductivity crossover exponent [g. in a resistor network,
we [3,16] define the two-bond splay susceptibility xsg(b, &) for the elastic network as

s (B, b)Y = [Tr¥ BV, (b)e " /Tre ], @)

where U (b)) = exp(ii{up x ﬁb) . I?) = exp(iify) is the splay order parameter and
{---lov denotes the average over the random variables €5, Tr indicates integration over
all displacements. Denoting by x5 the effective bond angle elastic resistance (i.e. the
inverse of the elastic constant) for the splay distortion defined as the angular displacement
of the two bonds divided by the torque, we have {5]

X5% = (6 — 8y |G8y — 8 (5)

where G is the Green function of the bond bending model defined as G = limeo, oo( V +i€) !,
in which V is the dynamical matrix. From equations (4) and (5), we obtain

A%
xsr(b, b)) = {exp | —— 5% ©)
2k av
where 735 = kxpw and k ~ ket ~ kpp. Note that x5%, = co if bonds & and b’ are not in
the same cluster, so that

/ A
Xsr(b, B) = [Ub,bf exp (—z—xﬁi)] N
K= kit

where v, is the pair-connectedness function. For small A%/k, we expand equation (7) in
powers of A2/ k:
2

A% A2
xsr(b, by = [vb.y (1 = Spkh )] ~ %p(b, &) (1 ~ ol = rbfl“”’”) ®)

where Zsp is the elastic splay crossover exponent which describes the way [x,f‘%,]av scales
with the distance, ie. [xS%law ~ Irp — ry|®/” and x,(b, b) is the susceptibility for
percolation. In the limit & — co, xsr(b, &) defines the percolation problem. Therefore,
the elastic problem of the bond bending mode! can be described by this crossover exponent
fsp. The crossover exponent . describing the way two-point elastic constant scales with
the distance can be defined in a similar way [15, 16].
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Using a scaling argument [11, 15, 16] the exponents {sp and ¢ can be related to the
elastic bulk modulus exponent fz:

Je=dv+isp 9

fe=d-2v+ L (10)
From which we have

Lot = 2v + {sp. (i1

To calculate the exponent &sp and {, we have developed series expansions in powers
of p up to p'® on the honeycomb lattice for the following quantities [5, 16]:

XSR=[ZX,5S_ :I EP(F)ZXM'
b

bel’
=3 ap"~|p—pfr (12
Xel -[me] ZP(F)Zx | ]
xel
= bap" ~|p—pel ' (13)
n

where the summation Y - is over all clusters, P(I") is the associated probability per site
that the cluster I' occurs, For the resistor network, two clusters which are topologically
equivalent give the same two-point resistance, For the elastic network, however, clusters
with different shapes give different values of elastic response. In calculating the series
for xsr and x. we have to count every cluster with different shape, which is very time
consuming.

The series up to order p'® on the honeycomb lattice are presented in table 1. For the
bond bending model the rigidity percolation threshold is the same as that for the usual bond
percolation on the honeycomb lattice, namely p, = 0.6527. So it is much easier to analyse
the series.

We have analysed the series with two different methods [21], one based on the
assumption that there are non-analytic confluent corrections to scaling and another [22]
based on the assumption that there are logarithmic confluent corrections. - Non-analytic
confiuent corrections to scaling [13] have several origins, including irrelevant operators.
They are definitely present in both isotropic and directed two-dimensional percolation and
thus must be allowed for in the series discussed in this letter. There is also evidence from
simulation by Zabolitzky et af [13] that there may be logarithmic corrections to elastic
critical behaviour in two dimensions.

To analyse the series, denoted in general by x(p), we assume that the series has the
form

x(p) ~ alp, — pY *[1 + b(p. — p)* +- -] P<pe (14)

where 4 is the critical exponent that we wish to determine, and p is the critical point. We
first transform the series in p into the series in the variable y, where

y=1-(1—p/p)™ _ (15)
and then take Padé approximants [23] to

d :
GO =My — l)aln(x) (16)
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Table 1. Series coefficients a, and by,.

n an by
1 3.0000 ~ 0.0000
2 10.5000 6.0000
3 32.9286 22,0000
4 100.0714 _64.0000
5 290.4774 168.0000
6 602.9276 337.5000
7 1576.393% 7852813
8 3805.2511 1661.4965
9 8916.5410 3434.4007
10 6 571.0220 5714.8813
11 42 337.3310 13 308.6716
12 82 386.6181 22 706.8160
13 175 877.6996 43 003.3083
14 334 729.4822 73 3053381
I3 763 0652709 157 338.7425
16 13016152032 224 620.4520
17 29166631815 485 147.8259
18 49844707163 717 171.4318

which should converge to —h. Since we already know the critical point p, we can simply
plot graphs of 2 versus the input A; and choose Aj such that all Padé approximants give
as closely as possible the same values of .

The assumption of logarithmic corrections entails fitting to the form

x(p) ~ (pe — p)~"|1n(p; — p)I° P < P (17)

We fitted this form with the method of Adler and Privman [22]. The analysis of the
logarithmic form involves taking Padé approximants to the series

H(p) = —(pc ~ pYIn{p. — PG /) — (R (pe — )1} (18)

so that when H(p) goes to 8 as p — p.. To get the exponent 2, we take Padé approximants
to H(p) at p. to obtain graphs of & as a function of A.

From our previous experience [16], the convergence of the series ysg is better than
Xe1. We have calculated the Padé approximants from the xg series assuming the scaling
form given in (14), where xgp is the second derivative of the series xsg. All the Padé
approximants converge around A; = 3.0, from which we estimate 2 = y + {sp + 2 =
5.70£0.02 or fsp = 1.31 £0.02, where we have used the exact value ¥ = 2.3888 ... [24]
and the error bar is somewhat subjective. 'We have also tested the logarithmic corrections for
the series xsr and found no convergence. For the series xo we have fitted the series ., to
the form of (14) and found that h = y + g+ 1 ~ 6.17 or &g ~ 2.78 which is clearly wrong.
If we enforce the logarithmic corrections, however, we find that & = y+&4+1 = 7.3940.05
and @ = —1.0. This gives ¢y = 4.00 &= 0.05 which satisfies relation (11). Since there is
an indication [13] that the logarithmic corrections exist in the bond bending model, we
favour the result £, = 4.00 & 0.05. The reason that the series x. gives a poor result is the
following: in calculating the series y.i, we calculate the effective two-point elastic resistance
x;fx, ~ ity v/ Fy » between sites x and x’, where u, o is the displacement along 7. ,, the
unit vector connecting sites x and x” and Fy » is the force along 7 » needed to maintain the
equilibrium. Hence x;’ff depends on F,. » which wil] affect the result for small systems or
small clusters. Using ¢sp = 1.3110.02 and equation (9), we obtain fz = 3.9830.02, which



Letter to the Edifor L419

is in excelient agreement with equation (1) and with the exponent calculated by Zabolitzky
et al.

In summary, we have calculated the elastic crossover exponents, {gp and ¢, for the
bond bending model using the series expansion method on the honeycomb lattice. We found
that ¢sp = 1.31 £ 0.02 and &y = 4.00 = 0.05. From the scaling theory fg = dv + sp, we
obtain fz = 3.98%0.02 which is in excellent agreement with equation (1) and the exponent
calculated by Zabolitzky et al. When enforcing the logarithmic correction, the exponent ¢y
is consistent with the scaling theory & = 2v -+ ¢sp.

I would like to thank Professor A B Harmis for helpful discussions. This work is supported
by a CRCG grant at The University of Hong Kong.
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