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DepMment of Physics, The University of Hong Kong. Pokfulam Road, Hong Kong 

Received 21 April 1995 

Abstract The .bond bending model is studied using ihe series expansion method an a 
honeycomb lattice. The elastic splay susceptibility XSR and the elastic compressional 
susceptibility xsl are calculated up to 18th order. The elastic splay crossover exponent, {sp. 
is found to be <sp = 1.31 i 0.02 which is very close to the conductivity exponent, <R=* of the 
resistor network. From the scaling relation fs = dw + {sp, we found that the bulk modulus 
exponent = 3.98 i 0.02 which is in excellen1 agreement with the result fB = 3.96 i 0.04, 
obtained by Zabolibky et nl using a transfer matrix technique on the same lattice. 

Recently much attention [1-6] has been directed towards randomly diluted elastic network. 
-Various models have been studied, such as the cenfml force model [ 1,3,5], the bond bending 
model [2,4], and the granular disk model [7,8], etc. ?he bond bending model is perhaps 
the best understood. It has been suggested [4.9, 10,111 that, for the bond-bending model, 
one has the relation 

fB=ff2V (1) 
where v is the correlation len-6 exponent for percolation and f = (d - 2)v + <Re 1121 
is the exponent for the conductivity of the analogous randomly diluted resistor network 
defined by X ( p )  - U I ~  - p J .  where U is the conductance of an occupied bond (which 
occurs with probability p )  and the vacant bonds occurring with probability 1 - p have zero 
conductance. Here <& is the conductivity crossover exponent for the resistor network. In 
terms of this exponent equation (1) can be written as f~ = d v ~ +  <&. Zabolitzky et 01 
[13] have calculated f B  for the bond bending model on a honeycomb lattice by computer 
simulation using a transfer matrix method. They found that f~ = 3.96 4~ 0.04. Using 
f = 1.30 [14] (or equivalently <e = 1.30) and,~u = $, we see that equation (1) is almost 
exact. Recently, there have been some efforts to understand the physics behind (1). For 
instance, it has been proved [IS] that the elastic splay crossover exponent [5] <sp of the bond 
bending model, which is related to the bulk modulus exponent f~ = du + <SP 111,s. 151, 
is the same as the conductivity crossover exponent <& for the lattice animal. Using'the 
series expansion method the elastic splay crossover exponent <sp has been calculated 1161 
on a honeycomb lattice up to 13th order. Due to the shortness of $e series, the crossovez 
exponent Csp could not be accurately determined. In this letter, we [17] have extended the 
series to 18th order, which enables us to estimate the exponent very accurately. We found 
that <sp = 1.31 5 0.02, which is in excellent agreement with <&. Our numerical result 
indicates that the elastic splay crossover exponent <sp and conductivity crossover exponent ~ 

<R* are the same in two dimensions. 
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Consider the randomly diluted bond bending model in two dimensions whose 
Hamiltonian can be written as 

where b labels bond and (b. b') denotes that the sum is over pairs of nearest-neighbour 
bonds. Also ?hb = U," - u,~,, uu = ur - u S v ,  where the s label sites at the ends of the 
bonds, ur is the displacement at site s,  kd is the central force elastic constant, kbb is the 
bond-bending elastic constant, i b  is a unit vector along the nearest-neighbour direction, and 
6b is an indicator variable which is one with probability p and zero with probability 1 - p .  
Note that the first term in (2) is the Hamiltonian for the central force model. The second 
term of (2) can be written as 

where ob = (thb x &) . i is the angular displacement of the bond b and i is a unit vector 
perpendicular to the plane of the lattice. 

In a manner similar to the two-point resistive susceptibility x k  introduced by Harris 
and Fisch [12] in calculating the conductivity crossover exponent { R ~  in a resistor network, 
we 15,161 define the two-bond splay susceptibility XsR(b, b') for the elastic network as 

XSR(b, b') = [ ~ r ~ ~ ( b ) ~ - i ( b ' ) e - ~ / ~ r e - ~ ] , ,  (4) 
where Y,(b) = exp(ih(ub x i b )  . i )  = exp(iI0b) is the splay order parameter and 
[. . . Iw denotes the average over the random variables 6b, T r  indicates integration over 
all displacements. Denoting by xf.% the effective bond angle elastic resistance (i.e. the 
inverse of the elastic constant) for the splay distortion defined as the angular displacement 
of the two bonds divided by the torque, we have 151 

(5) 
where G is the Green function of the bond bending model defined as G = lime+m( V+ie)-], 
in which V is the dynamical mabix. From equations (4) and (3, we obtain 

= (ob - 0ulGkb -ob,) 

where 2;; = kx:; and k - kCf -, kbb. Note that x i ;  = 00 if bonds b and b' are not in 
the same cluster, so that 

where vh.u is the pair-connectedness function. For small h2/k ,  we expand equation (7) in 
powers of h 2 / k  

where {sp is the elastic splay crossover exponent which describes the way [xf,i:RHIav scales 
with the distance, i.e. [xf,$lav -- Irb - rb.lrspl" and Xp(brb') is the susceptibility for 
percolation. In the limit k + ea, Xsn(b, b') defines the percolation problem. Therefore, 
the elastic problem of the bond bending model can be described by this crossover exponent 
<sp. The crossover exponent describing the way two-point elastic constant scales with 
the distance can be defined in a similar way [15,16]. 
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can be related to the Using a scaling argument [ I I ,  15,161 the exponents <sp and 
elastic bulk modulus exponent fB: 

fs = dv + <SP 

fB = (d - 2)v + <el. 

<e1 = 2v + <SP. 

(9) 

(10) 

(11) 

From which we have 

To calculate the exponent <s'sp and <el, we have developed series expansions in powers 
of p up to pI8 on the honeycomb lattice for the following quantities [.5,16]: 

where the summation Er is over all clusters, P(r) is the associated probability per site 
that the cluster r occurs. For the resistor network, two clusters which are topologically 
equivalent give the same two-point resistance. For the elastic network, however, clusters 
with different shapes give different values of elastic response. In calculating the series 
for XSR and x.1 we have to count every cluster with different shape, which is very time 
consuming. 

The series up to order pl* on the honeycomb lattice are presented in table 1. For the 
bond bending model the rigidity percolation threshold is the same as that for the usual bond 
percolation on the honeycomb lattice, namely pc = 0.6527. So it is much easier to analyse 
the series. 

We have analysed the series with two different methods [21], one based on the 
assumption that there are non-analytic confluent corrections to scaling and another [22] 
based on the assumption that there are logarithmic confluent corrections. ~ Non-analytic 
confluent corrections to scaling [ 131 have several origins, including irrelevant operators. 
They are definitely present in both isotropic  and^ directed two-dimensional percolation and 
thus must be allowed for in the series discussed in this letter. There is also evidence from 
simulation by Zabolitzky et ai [I31 that there may be logarithmic corrections to elastic 
critical behaviour in two dimensions. 

To analyse the series, denoted in general by ~ ( p ) ,  we assume that the series has the 
form 

X ( P )  - 4 p c  -p)-% +b(pc -PI*' +... I 

Y = 1 - (1 - P / P P  

P < pc (14) 

(15) 

where h is the critical exponent that we wish to determine, and pc  is the critical point. We 
first transform the series in p into the series in the variable y. where 

and then take Pad6 approkmants [23] to 
d 

G(Y) = &(Y - 1)- In(x) (16) 
dY 
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Table 1. Series caefficienls n, and h.. 

I 3.WOO 
2 10.5000 
3 32.9286 
4 100.0714 
5 290.4774 
6 602.9276 
7 1576.3939 
8 3805.2511 
9 8916.5410 

IO 16571.0220 
1 1  42 337.3310 
12 82 386.6181 
13 175 877.696 
14 334 729.4822 
15 763 065.2709 
16 1301 615.2032 
17 2 916 663.1815 
18 4 984 470.7163 

~i 0.0000 
6.0000 

22.0000 
64.0000 

168.0000 
337.5000 
785.2813 
1661.4965 
3434.4097 
5714.8813 

13 308.6716 
22706.8160 
43 003.3083 
73 305.3381 

157 338.7425 
224 620.4520 
485 147.8259 
717 171.4318 

which should converge to -h. Since we already know the critical point pc  we can simply 
plot graphs of h versus the input AI and choose A I  such that all Pad6 approximants give 
as closely as possible the same values of h. 

The assumption of logarithmic corrections entails fitting to the form 

x ( p )  - (pc  - In&, - p~ P < Pc. (17) 
We fitted this form with the method of Adler and Privman [22]. The analysis of the 
logarithmic form involves taking Pad6 approximants to the series 

H ( p )  = -(pc - p)I Wp, - p)lI(x’/x) - th/(pc - P)I) (18) 
so that when H ( p )  goes to B as p + pc. To get the exponent h, we take Pad6 approximants 
to H ( p )  at pc  to obtain graphs of B as a function of h. 

From our previous experience [161, the convergence of the series XSR is better than 
x.1. We have calculated the Pad6 approximants from the xlR series assuming the scaling 
form given in (14), where x{R is the second derivative of the series XSR. All the Pad6 
approximants converge around A I  = 3.0, from which we estimate h = y + {sp + 2 = 
5.70 & 0.02 or {SP = 1.3 1 f 0.02, where we have used the exact value y = 2.3888 . . . [24] 
and the error bar is somewhat subjective. We have also tested the logarithmic corrections for 
the series XSR and found no convergence. For the series xe1 we have fitted the series xil to 
the form of (14) and found that h = y+Cel+ 1 - 6.17 or 6 1  - 2.78 which is clearly wrong. 
If we enforce the logarithmic corrections, however, we find that h = y+re1+l = 7.3910.05 
and 6 = -1 .O. This gives Cel = 4.00 i= 0.05 which satisfies relation (1  1). Since there is 
an indication [13] that the logarithmic corrections exist in the bond bending model, we 
favour the result 6 1  = 4.00 f 0.05. The reason that the series xrl gives a poor result is the 
following: in calculating the series ,ye], we calculate the effective two-point elastic resistance - U ~ , Y / F ~ , ~  between sites x and XI, where ux,xr is the disp1,acement along ?z,xr,  the 
unit vector connecting sites x and x’ and F.,e is the force along ?x,x, needed to maintain the 
equilibrium. Hence x:[, depends on ?x.,, which will affect the result for small systems or 
small clusters. Using rsp = 1.31f0.02 and equation (9). we obtain f~ = 3.9810.02, which 

e l  
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is in excellent agreement with equation (1) and with the exponent calculated by Zabolitzky 
et al. 

for the 
bond bending model using the series expansion method on the honeycomb lattice. We found 
that <sp = 1.31 1 0.02 and = 4.00 1 0.05. From the scaling theory f~ = d u  + c s p ,  we 
obtain f~ = 3.9810.02 which is in excellent agreement with equation (1) and the exponent 
calculated by Zabolitzky et al. When enforcing the logarithmic correction, the exponent 
is consistent with the scaling theory = 2u + <sp. 

I would like to thank Professor A B Harris for helpful discussions. This work is supported 
by a CRCG grant at The University of Hong Kong. 

In summary, we have calculated the elastic crossover exponents, {sp and 
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